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Abstract. We developed a novel multiobjective markdown system and deployed it across
many merchandising units at Walmart. The objectives of this system are to (1) clear the
stores’ excess inventory by a specified date, (2) improve revenue by minimizing the
discounts needed to clear shelves, and (3) reduce the substantial cost to relabel merchandise
in the stores. The underlying mathematical approach uses techniques such as deep
reinforcement learning, simulation, and optimization to determine the optimal (marked-
down) price. Starting in 2019, after six months of extensive testing, we implemented the
new approach across all Walmart stores in the United States. The result was a high-
performance model with a price-adjustment policy tailored to each store. Walmart in-
creased its sell-through rate (i.e., the number of units sold during the markdown period
divided by its inventory at the beginning of the markdown) by 21% and reduced its costs
by 7%. Benefits that Walmart accrues include demographics-based store personalization,
reductions in operating costs with limited numbers of price adjustments, and a dynamic
time window for markdowns.
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Introduction
Walmart Inc. has been the world’s largest retailer
since 1989, generating total revenue of $514.4 billion
in 2019. Walmart’s U.S. business focuses on three
strategic merchandising units: grocery (56% net sales),
health and wellness (11% net sales), and general mer-
chandise (33%net sales). General merchandise includes
entertainment (e.g., electronics), home and seasonal
products, hardlines (e.g., stationery), and apparel. In
the United States, the company employs 1.5 million
associates who serve customers in 4,769 brick-and-
mortar stores spanning all 50 states. Walmart earns
the trust of customers every day by providing a broad
assortment of quality merchandise and services using
everyday low price (EDLP) and everyday low cost
(EDLC) strategies. EDLP is the pricing philosophy
under whichWalmart prices items at a low price every
day so that customers trust that the prices are the
lowest in the market and do not fluctuate. EDLC is the
company’s commitment to control expenses so that
cost savings benefit its customers.

The retail landscape is an ever-changing phenom-
enon. In past decades, the convenience of shopping
implied more expensive products; this expectation is
no longer true because consumers now expect both
convenience and low prices. Today’s retail industry is
at an inflection point, primarily driven by changes in
consumer-behavior patterns. The competition among
retailers has shifted from a race among a few massive
players that sell nationally to several smaller players
that cater to local regions. As a result, retailers must
not only provide a range of new products, but also
consistently find new ways to make their operations
more efficient and nimbler, thus enabling them to
pass on savings to their customers. History is rife with
examples in which retailers have consistently employed
disruptive innovations to meet their customers’ needs
and to understand their behavior; for example, they
created supercenters, which became one-stop shops,
and introduced online shopping with one-day de-
livery. However, because of the recent wave of massive
digital transformation, the changes in consumer patterns
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have become more intermittent and less predictable.
To keep up with these sporadic changes in cus-
tomer needs, the core of every retail organization
(i.e., its merchandising function) must adapt to con-
sumer trends.

Markdown is one of the core merchandising op-
erations for retailers. It is a deliberate reduction in the
price of retail merchandise to increase the sales ve-
locity (i.e., rate of sales at a specific point in time) to
clear shelves of an item by a specific date. It can
happen for any of the following reasons:

1. To remove unsoldmerchandise and, thus, create
display space for other products. In Walmart’s re-
tailing, modular refers to all products that a store sells
within a given product category (e.g., ice cream).
When the composition of products within a given
product category changes (e.g., the replacement of
one brand of ice cream with another), we refer to this
change as modular refresh and the new composition of
products as the new modular. For a product category,
modular refresh occurs at least once a year for a
given store.

2. To remove seasonal items (e.g., Christmas lights)
after the season has ended.

3. To remove unsold perishable items (e.g., meat or
milk) close to their sell-by-date expiration.

In a given year, roughly 80% of the categories—
including obsolete merchandise from modular re-
fresh, seasonal items, and perishable items—experience
markdowns in a particular store. The number of
categories needing markdown differs every year be-
cause the decision making inherent in each supply
chain strategy varies. Unlike other price changes that
a store can make, the price of an item undergoing
markdown is reduced permanently, and the item will
not be replenished—that is, Walmart will not refill the
item on its shelves.

Walmart is a mass merchandiser and carries more
than 100,000 items in any given store or supercenter
across all spectrums of retail (e.g., grocery, general
merchandising, and health and wellness) (Walmart
2005). Hence, markdown decisions must be made
across all its merchandising units; that is, across
multiple stores, different merchandising units are
marked down at the same time. Determining an
optimized markdown strategy for Walmart is more
complicated than for other retailers, because the com-
pany’s markdown strategy requires that its stores
provide updated prices for markdown products across
different categories each week. The effect of having
diverse, but associated, items in the same stores makes
finding an optimal markdown strategy even more
challenging (e.g., marking down tortilla chips affects
the sale of salsa because consumers often buy these
products together).

Walmart’s Previous Markdown Approach
For simplicity of execution across various organiza-
tions within the business (e.g., operations, merchan-
dising), Walmart implemented a rule-based, tiered
discounting process (e.g., 25%–50%–75%) for all items
that need to be marked down. Using a 25%–50%–75%
policy, all items in a given category are marked
down by 25% across all its stores during the first week
of the markdown period; after a week, all unsold
inventory in this category is then discounted to 50% of
the original price. Finally, after several weeks, if any
products in the category are still left, they will be
marked down to 75% of the original price. Any in-
ventory left unsold after this period will be removed
from the shelves.

Why Do We Need an Algorithmic Approach
to Markdowns?
Although the previous rule-based approach provides
easy interpretability and implementation, it does not
leverage patterns in the data (e.g., it does not con-
sider the demand pattern for different items); it is
not optimal for achieving revenue; and it is not per-
sonalized to each specific store and item. For exam-
ple, each item in a store can have different price
elasticities and a unique optimal price, at which
Walmart can sell everything by the desired date. The
objectives of making the markdown process more
efficient and more data-driven inspired us to develop
an algorithmic approach to markdowns.
Markdowns in brick-and-mortar stores face more

constraints than they do in e-commerce environ-
ments. Items in stores must be sold out by a fixed
target date to provide space for new products (i.e.,
new modulars). Meanwhile, sufficient inventory must
remain on the shelves during the markdown period
(i.e., clearance period) to fulfill customer demands and
avoid out-of-stock situations. In an e-commerce en-
vironment, products are simply removed from cata-
logues if they are sold out. Moreover, because of the
operating cost of making price changes (i.e., labeling
and labor costs) in a store, updates to marked-down
prices are only allowed a limited number of times;
however, in an e-commerce environment, price up-
dates can be executed many times. From an algorith-
mic point of view, brick-and-mortar stores are a more
challenging environment to train and learn when
compared with the e-commerce environment. For
example, the e-commerce digital environment allows
the logging of data streams (e.g., item clicks or items
added to a cart), which can provide the algorithms
with more data about customers. Conversely, stores
havemostly observational data due to the high cost of
running experiments within the stores.
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Influencing the sale of an item by changing its price
is a classic problem that is studied extensively in the
literature (Gallego and Wang 2014, Ferreira et al.
2016). One way to address the problem is to ascer-
tain the price–volume relationship and use it to de-
termine the new price point. However, as wemention
above, markdowns in stores not only have a rigid
constraint that they must be cleared from the shelves
by a specified date, but the number of price changes
must be limited due to operations costs. Our approach
adds a time dimension to this price–volume rela-
tionship and treats it as an optimization problem.
Another challenge we faced was to design a category-
agnostic algorithm that could be applied to a wide
range of items in Walmart’s stores and would be
simple to execute. In analyzing the problem, we de-
termined that a successful algorithmic approach to
markdowns would provide the following benefits:

1. Reduced operations and labor costs by reducing
the number of physical price updates (e.g., limiting
the number to one or two updates).

2. Reduced unsold inventory at the end of the
modular life cycle and allocation of the freed space to
higher-selling items (i.e., opportunity cost).

3. Increased revenue by finding the lowest mark-
down rates that would achieve a product sell-through
rate (STR) of 100% by the end of the markdown pe-
riod (i.e., the time at which new products would be
available to stock the shelves). STR is the number of
units sold during the markdown period divided by
the units in inventory at the beginning of the period. It
is important to maintain items not sold out at the
beginning of the markdown and sell them gradually
until the end of the markdown period.

In the remainder of this paper, we discuss the de-
tails of the algorithm, the development and opera-
tional aspects of executing it within stores, the en-
gineering architecture and its implementation, and
key results and benefits to the end users.

Algorithmic Framework
Theoretically, the optimal markdown strategy may
be a single-markdown price point that results in
clearing the shelves by the specified date, but not
before and not later than this date. This strategy is
prompted by the knowledge that fewer price changes
are easier to implement and avoid the cost of relab-
eling merchandise. Knowing whether the single-pricing
strategy is substantially suboptimal is important, espe-
cially when mean reservation prices (i.e., the maximum
prices that buyers arewilling topay for products) decline
over time (Wedad and Keskinocak 2003, Gupta et al.
2006, Caro and Gallien 2012). In such cases, the next
best alternative is to use a multiple-pricing strategy
that results in clearing the shelves by a specified date.
Hence, we proposed a multiobjective optimization

in a constrained environment that aims to maximize
revenue by addressing the three benefits we list in
the Why Do We Need an Algorithmic Approach to
Markdowns? section.
The core building blocks of this framework are

the forecasting engine and the optimization engine.
The forecasting engine estimates the expected de-
mand at various price points, including a scenario
with no price change. The optimization engine rec-
ommends the final strategy (i.e., single-price mark-
down or multiple-price markdown) based on which
of these strategies is optimal, given the objective.
Figure 1 shows the high-level architecture of our
framework.Aswe illustrate in thisfigure, the decision
variables of the optimization model are the prices
and the time points at which the price is updated. In
the objective function, relabeling cost is considered
as a penalty.

The Forecasting Engine
The objective of the forecasting engine is to estimate
the price–demand relationship for every item. Gupta
et al. (2006) tackled the problem of markdowns in a
classical revenue management (RM) model by as-
suming that demand is either deterministic or sto-
chastic. In a deterministic setting, the demand of an
item is an exponential function of price only. In a
stochastic setting, the demand of an item is an ex-
ponential function of price with some degrees of
uncertainty. However, we made three improvements
to apply it to our domain. (1) The demand in an RM
model is a function of price; in our model, it is a
function of multiple predictor variables. (2) We im-
pose a constraint that we must keep inventory on
the shelves during the markdown period. (3) The
price-sensitivity parameter, the sensitivity of demand
quantity to changes in price, in an RM model is market-
based; we determine the price-sensitivity parameter
through historical data.

Figure 1. (Color online) The Markdown Process Consists of
Forecasting to Determine the Price-to-Demand Relationship
and Optimization to Determine the Most Favorable
Markdown Prices and Markdown Period
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In our approach, we assume that demand is sto-
chastic and a function of several variables (e.g., hol-
idays, time of year, and store footfall), including price.
To accurately estimate the price–demand relation-
ship, we employ an ensemble approach of forecasting
models that uses two models:

1. Gradient-boosting regression (Boehmke and
Greenwall 2019) learns the relationship between vari-
ous independent variables, including price, to estimate
demand (i.e., demand is a function of price and other
predictor variables where the function is learned from
historical data). Thismodel produces a predictionmodel
in the form of an ensemble of weak prediction models
(i.e., decision trees); see Spedicato et al. (2018) for more
details. Its predictor variables are (a) aggregated time-
series data of sales for the merchandise, including
both current sales and lagged (i.e., previous period)
time-series sales; (b) price-based features, such as
price fluctuation from the previousweek and baseline
price, which include absolute differences and mar-
gins; (c) calendar-specific binary features, such as a
holidays, paydays, and special events; (d) categorical
features, such as type of holiday or calendar event; (e)
numerical features, including available inventory,
current inventory level compared with inventory at
the start of the markdown period; (f) taxonomy of
items in theWalmart ecosystem, such as subcategory,
category, department, and division of the item;
and (g) transformations of price-based features, such
as the logarithmic transformation of price.

2. A partial differential equation (PDE) based on
the Heat equation (Cole et al. 2010) encapsulates all
possible independent variables, except price and time,
into a single variable k and explicitly models the re-
lationship between inventory decreases and prices;
that is, inventory is a function of price k and time,
function is solution to a second-order PDE, and k is
learned from historical data.

The first demand-forecasting model (using gradi-
ent boosting) generates weekly forecasts based on
multiple predictor variables. This can be applicable in
determining multiple price updates during the mark-
down period. The second model (based on the Heat
equation) forecasts the demand based on a single price
during the entire markdown period and looks at how
on-hand inventory decreases. We use different use
cases for each forecasting model.

We also considered the efficacy of forecasting the
price-to-demand relationship by explicitly calculat-
ing the price elasticity. However, using elasticity
has some drawbacks. For example, calculating an
effective elasticity curve requires isolating the effects
on demand by exclusively using pricing policies and
not considering other external factors. Demand is a
function of many variables, and modelling it using
only price elasticity does not provide a full view of the

environment, thus, resulting in missing some factors
that are important in a realistic model.

Optimization
As we illustrate in Figure 1, the decision variables of
the optimization model are the prices and the price-
updating time points. In the objective function, relabel-
ing cost is considered as a penalty. Specifically, we want
to determine the caseswhere a single-pricingmarkdown
strategy outperforms a two-price strategy. We address
these questions by introducing two methods: a single-
pricing strategy and a multiple-pricing strategy.
In the development phase, we considered dynamic

programming (DP) (Li et al. 2020) to determine the
impact of the markdown-optimization module on
operating costs and revenue generation. However,
we found that DP is not practical in our case because
of the large amount of data involved.

Optimizing Revenue and Cost Using Only a Single-
Markdown Pricing Strategy
The search for an optimal single-markdown price
strategy must satisfy two constraints, as we mention
above: (1) Shelves should be clear (i.e., achieving a
100% sell through of on-hand inventory by the end of
markdown period is necessary); and (2) the 100% sell
through should not happen prior to a prespecified
duration that precedes the end of markdown period.
That prespecified duration is a user-controlled pa-
rameter that can vary by product, but is typically
within one week.
To obtain the price that achieves maximum ex-

pected revenue,wemap the price–time inventory.We
derive an equation that describes how the distribu-
tion of inventory evolves over time at a store, gov-
erning the inventory-based adoption of a markdown
price, as we describe below. In this equation, the
stochastic variable of price sensitivity is an important
variable, which is unique to a particular store and
item. Instead of assuming the price-sensitivity value,
we use historical data to find the price-sensitivity k
value. This value is computed by testing a full range
of markdown prices for several weeks using a sub-
set of sampled stores prior to the markdown period.
In Figure 2, we simulate inventory reduction by
changing the price of one product in different stores
(i.e., we use different price-sensitivity markets). To
find a solution that satisfies the PDE, the boundary
conditions, and the initial conditions, we use the
Fourier method (i.e., separation of variables). The
findings from actual inventory over time with prices
validate our assumption of approximating inventory
using this PDE. Figure 2 shows an example using
one product.
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Appendix A includes the solution to the PDE equa-
tion and the single-markdown price-optimization
formulation.

Multiple-Markdown Price Optimization
In some situations, the single-pricing strategy might
not be optimal andmay not guarantee that shelves are
cleared by a specified date. For example, for a non-
perishable, expensive item with a long markdown
window, multiple price changes may be more effi-
cient. It is increasingly difficult to forecast how de-
mand changes during the selling season. When a
markdown time window is long, other factors (e.g.,
holidays, weather changes, or news releases) may
impact the underlying stochastic price-sensitivity value
at the beginning of the markdown period. Longer
markdownperiods introduce additional uncertainties,
and using a single price results in high error rates in
estimating the final inventory. The supposed sub-
optimality of the first price change can be accounted
for in the subsequent price drops. For specific items,
whose demand varies significantly due to confound-
ing factors that could, for example, stem from com-
petitors and substitute products (Şen 2016), it would
be more efficient to identify the amount of sales lift we
can achieve at various prices and select a multiple-
repricing policy. This would help us to accomplish
two counterintuitive objectives at the same time—
clearing inventory and maximizing sales revenue.
In the academic literature, several studies have con-
cluded that single pricing may not always be optimal

(Willemain et al. 2004, Cachon and Kök 2007, Zhang
and Cooper 2009), primarily due to the decline of
reservation prices over time.
By solving for the optimal single price, retailers

are able to see the potential benefits from adopting
more flexible pricing strategies. Retailers also receive
feedback on the benefits of introducing new price
points and identify redundant ones (e.g., a 25% and
30% markdown both result in the same customer
response). Having a multiple-markdown pricing strat-
egy also serves as a policy to meet the objective in
case the single-pricing strategy falls short of clearing
shelves by a specified date.
To solve the multiple-pricing optimization prob-

lem, we consider modeling as a Markov decision
process, as studied in the literature (van Otterlo and
Wiering 2012). The demand for the products can
change according to the fluctuations in the intensity
with which customers arrive to browse the store, the
level of inventory available on the shelves, and the
previous prices customers observed. The demand
arises from an underlying consumer-choice model, in
which the prices at which different customers decide to
purchase are independent and identically distributed
random variables and are not time-invariant. Gupta
et al. (2006) demonstrate the approach of N-pricing
opportunities with an assumption of independent
demand in different periods and also provide a
heuristic procedure that considers demand correla-
tion. Wang et al. (2016) develop a markdown policy
by studying the perception of customer price fairness.

Figure 2. The Graphs Illustrate Simulations of Inventory Reductions over Time with Prices (0.1, 0.3, . . . 1.9) for One Item at
Store #0, . . ., #5

Note. In the graphs, where k = 0.2, 0.35, . . . 1.02, k is a stochastic variable that determines price sensitivity.
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Some consumers may compare their experience with
others who purchase the same items. Price unfairness
or inequity is perceived when different prices are
quotedwithout reasonable explanations. Jagabathula
and Rusmevichientong (2016) assume that the cus-
tomers follow a two-stage choice process; customers
consider the set of products with prices less than a
threshold (i.e., reservation price) and choose the
most preferred product from the set considered.
They develop a tractable nonparametric expectation-
maximization algorithm to fit the model to the ag-
gregate transaction data and design an efficient al-
gorithm to determine the profit-maximizing of price.
Smith and Achabal (1998) and Sethi and Cheng (1997)
suggest the use of a set of states of relevant infor-
mation about the demand, and the transition between
states is governed by a Markov chain.

With N (usually less than four) opportunities to
iteratively reduce prices, we consider a finite-horizon
Markov decision process (MDP) (Puterman 2014)
because it is a sequential decision-making problem,
whichfits a clearMDP structure. AnMDP is described
by a finite set of states, actions, rewards, and tran-
sition probabilities between states. At each decision
epoch (i.e., time), which is each week in our case, a
decision maker observes the state of the system. The
system state provides the decision maker with all
necessary information for choosing an action (action
is a new markdown price, in our case) from the set of
available actions in that state (state includes all the
information about the product, store, and time, in our
case). Selecting an action in a state has two results:
(1) The decision maker receives a reward or incurs a
cost (in our case, the reward is the sales minus cost),
and (2) the system evolves to a possibly different state
at the next decision epoch. Both the reward and
transition probabilities depend on the state and the
choice of an action. As this process evolves over time,
the decision maker receives a sequence of rewards. A
policy provides the decision maker with a prescrip-
tion for choosing this action in any possible future
state; in our case, a policy is about a sequence of
choosing markdown prices in any possible future
state. A decision rule specifies the action to be chosen
at a particular time; in our case, a decision rule
specifies the markdown price to be chosen at a par-
ticular time. It may depend on the present state
alone or may include all previous states and actions.
A policy is a sequence of decision rules. Imple-
menting a policy generates a sequence of rewards.
The sequential decision problem is to choose a policy
to maximize a function of this reward sequence.
MDPs are useful for studying optimization problems
solved via dynamic programming (Bertsekas 2005)
and reinforcement learning (Sutton and Barto 2018).
Dynamic-programming methods are well developed

mathematically; however, they require a complete
and accurate model of the environment (Sutton and
Barto 2018). Q-learning (Watkins 1989) is one of the
most popular reinforcement-learning algorithms to
solve an MDP using an action–value function. The
action–value function returns the expected true value
(Q-value) of an action in a state under a given policy.
A true value of an action is themean rewardwhen that
action is selected. Averaging the rewards actually
received is one method used to estimate the value of
an action.
We built our environment using OpenAI Gym—a

toolkit for developing and comparing reinforcement-
learning algorithms (Sutton and Barto 2018). It em-
ploys an underlying demand-prediction model to
predict the expected difference in sell-through rate,
given a markdown price and period. Under this en-
vironment, we simulate millions of episodes by ini-
tially exploring random actions and eventually fol-
lowing a specific policy of actions to exploit good
markdown prices that yield a high cumulative re-
ward. This allows us to avoid the cost of time and
money to collect data by conducting live experiments
in stores and helps us to augment the data.
By structuring the search to explore and exploit the

sequence of actions given an initial state, where state
includes factors such as inventory units, store, and
original prices that lead to maximum reward, we
estimate the optimal action–value function for all
state and action (e.g., a new markdown discount
considered as an action) combinations. Action–value
function is the function of state–action pairs that es-
timate the goodness of performing a given action in a
given state. The notion “goodness” here is defined in
terms of future rewards that can be expected or, more
precisely, in terms of expected return. As a result, we
obtain the optimal policy of actions and learn this
policy for each store; the output is a sequence of price
changes, their markdown percentages, and the du-
ration of the price changes.
The model starts with a randomly initialized action–

value function, which yields the expected discounted
reward. It starts from a state, chooses a discounted
price, uses policies for all time steps, recursively it-
erates to determine the optimal action–value-based
function using the Bellman Equation (Dixit 1990), and
reaches the optimal policy. To solve the optimization
problem using an MDP, a dynamic-programming
technique is usually used (Sutton and Barto 2018).
We note that the construction of an action–value
function suffers from the well-known curse of di-
mensionality of dynamic programming (Bertsekas
2005). For example, suppose there are m units in
the starting inventory and T periods. Then, the size of
the state space is exponential in mT. The more in-
formation related to demand that we add into the
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state space, the larger the size of the state space is. To
resolve this issue of high dimensionality of state space,
we use a deep-learning algorithm (Double-DQN) (van
Hasselt et al. 2015) tomap values from the state space.
Double-DQNcombinesQ-learningwith two identical
deep neural networks; the first learns to update the
value function during the experience replay (Lin
1992), and the second is a copy of the last episode
of the first model. The Q-value is computed by using
the second model. For the experience replay, the
observed state transitions are stored for some time
and sampled uniformly from this memory bank to
update the network. We use this deep-learning al-
gorithm, which utilizes a convolutional neural net-
work architecture trainedwith a variant of state space
and action–value functions, to combine simulation
and function approximations to alleviate the curse of
dimensionality associated with the traditional Monte
Carlo approach and to match the scale of the data
available. Another advantage of using this algorithm
is that it overcomes the overoptimism ofQ-learning in
large-scale problems, which results from the inherent
estimation errors.

In summary, we use both single-pricing andmultiple-
pricing optimization to determine markdown prices.
Before the start of the markdown period, we run both
the single-pricing and multiple-pricing models and
compare their estimated objective values, including
revenue, label cost, and labor cost of disposal. We then
select the model that provides a higher objective value
(i.e., revenue minus multiple costs), which is usually
the single-pricing model. During the markdown pe-
riod, we monitor the actual sales automatically. If,
for the reasons we explain above, the single-pricing
strategy does not perform as estimated, we run the
multiple-pricing model again and provide an updated
price.AppendixB includes the formulation formultiple-
markdown pricing optimization.

Development and Implementation
The design, implementation, and validation of this
work were led by Walmart’s merchandising data-
science team. The application-development team
working with the data-science team demonstrated to
the management of both the merchandising and op-
erations teams that using store-specific, data-driven
algorithms provides results that consistently outper-
form the legacy rule-based policy.

A key component to winning user support was that
we ran extensive experiments rather than going directly
to production. Each time, we executed the prices gen-
erated by our algorithm; we compared the results with
those obtained by using the rule-based policy. Ourwork
also served as a proof of concept of applying deep re-
inforcement learning (deep-RL) within large organiza-
tions, such as Walmart, worldwide. We have outlined

the challenges and identified corresponding methods to
overcome them in applying our end-to-endoptimization
framework on a large scale. Furthermore, in a compli-
cated and dynamic market, a system with the ability to
learn and adapt simultaneously provides a competi-
tive advantage.
Developing the concept and implementing a model

of the markdown process required time and effort to
ensure a successful deployment and user acceptance.
As we tested the algorithm in Walmart stores, we
addedpractical constraints (e.g., amarkdown-percentage
threshold). We built a dashboard to help us interac-
tively provide prices based on the inventory units on
the shelf. Appendix A illustrates the practical con-
straint on the clearing timing period. By breaking
down our analyses, we found that the performance
associated with price changes differed in a few stores.
Therefore, we had to determine the characteristics of
each store by experimenting. As a result of these
analyses, we determined that incorporating a store-
clustering algorithm, while splitting stores for ex-
perimentation purposes, provided us with the ca-
pabilities to compare the results.
The markdown system we developed consists of

four modules: store clustering, experimentation, price–
demand prediction, and optimization modeling. One
advantage of the system is that each module can be
updated independently of the other modules. For
example, price–demand prediction can be improved
independently of optimization modeling. Experiments
can be run both offline and online, depending on the
solution options.Our online experiments allowedus to
execute different prices in brick-and-mortar stores,
while offline experiments used simulations that are
based on historical transaction data. One of the biggest
challenges to implementing the full system across all
product categories was to provide a seamless end-user
experience for such a complex distributed backend
system. This implies that supporting some of the rule-
based requirements, such as determining the stores
and products to be included in a markdown decision
and selecting the markdown date, had to be incor-
porated into the new algorithms. Many decisions that
are critical to Walmart’s operations had to be made
under stringent time constraints. We entered these
inputs (e.g., store, product to be marked down, and
end date of markdown period) into our application as
Apache Kafka messages. From the user interface of
the application, merchants (i.e., employees respon-
sible for makingmerchandising decisions) can choose
to use our recommendations, the rule-based policy, or
their manually created prices. Tomeasure our results,
we compared the performance of each markdown
plan (i.e., a plan for the products in all product cat-
egories, including thousands of stock-keeping units
(SKUs) across all associated stores, to be deleted
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before a new modular refresh date) using our algo-
rithms against those using the rule-based system. We
measured the percentage of U.S. markdown plans
that used our recommendations since we launched
the system and found that it started with 30% of
grocery products and grew to 100% of all products,
except apparel.

Measurable results from our experiments and sim-
ulations helped to validate our methodology. In 2018,
to determine the value of our optimization algorithm,
we used deep-RL (i.e., explore–exploit) to optimize
markdown strategies for food and consumable prod-
ucts by comparing the results of our strategies with
those that used the rule-based system. Data scientists
and engineers from the Walmart machine-learning
group and the pricing-software-engineering group
collaborated to develop a prototype experimental sys-
tem. Executing the experiments related to pricing
within stores presentedmany challenges (i.e., business
constraints), which the data scientists incorporated
into the experimental design. Designing the experi-
ments to compare different pricing strategies is an
example of a constraint. Customers in a brick-and-
mortar store see only one price for all units of a given
SKU; however, online retailers can show different cus-
tomers differing prices for the same product. To resolve
this challenge, we segmented the stores based on de-
mographics and sales, as we explain in the Algorith-
mic Framework section, then applied the rule-based
strategy to storeswithin each segment.We selected the
salad-dressing product line in about 1,200 stores to test
our algorithm; the remaining stores used the rule-
based system. Our business analysis team worked to
develop metrics to compare the proposed and legacy
systems on a weekly basis. Initially, although the new
system resulted in clearing outmore inventory, we did
not achieve the expected revenue results because our
system provided more discounts than the rule-based
system. To address this, we collected more data and
corrected the Walmart internal inventory data, vali-
dating and enhancing the sales information, simulat-
ing the store inventory and the pricing system,making
necessary corrections, and dividing stores into ex-
perimental and control groups based on geographical
data. Our efforts inmaking these improvements showed
that the explore–exploit framework provided signifi-
cant benefits in the product departments, such as
furniture, as we show in Figures 3–7. Based on the
success of our results, additional merchants wanted
to include their products as part of our experiments,
and we included additional stores.

In the following year, 2019, we extended our ex-
periments to all 4,769 U.S. stores and to all food and
consumable-products categories to verify the robust-
ness and reliability of themodel. The feedback from the
operations teams within the stores inspired the data

science team to develop the optimal single-price strat-
egy, which would save significant label-printing costs.
When a single-pricing model was ready for testing,
the team had to address the business concern of whether
an overdiscounted single price would result in revenue
loss. To resolve this concern,we developed a program to
simulate the algorithm. The simulation showed the
discounted-price recommendation and the inventory
that would still be on the shelves at the end of the
markdown period. Beginning in September 2019, we
tested and validated single-pricing optimization at
a subset of the stores. Promising results convinced
both the merchants and operations departments of
its value. P. Mehrotra presented the results from
both the single- and multiple-pricing approaches to
Walmart’s executive president of U.S. operations and
its U.S. chief executive officer to gain their acceptance,
the backing of Walmart management, and the agree-
ment (i.e., support) of all stakeholders. As a result,
Walmart management began preparations for the de-
velopment and deployment of a fully integrated opti-
mization system.We had ongoing discussions with the
merchandising department and data science teams on
how to determine when to use single pricing. Our
machine-learning engineering team designed the
system with both the capability to rollout our op-
timal prices to all stores on specific categories and to
run experiments for testing new features or constraints.
A close partnership among the operations-research
practitioners, the merchants, and the operations de-
partment was a key to our success.

Organizational Adoption of the Algorithm
Analytics can be transformative only if it is aptly
adopted by the enterprise and is accepted by end
users. Over the past few years, enterprises have
invested millions of dollars in developing artifi-
cial intelligence and machine-learning capabilities,

Figure 3. This Graph Shows the Evolution of STR as a
Function of Time for Furniture Products
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but the adoption remains low (Gartner 2018). One of
the fundamental reasons for this resistance is that
challenges are inherent in explaining the complex
algorithms (also referred to as black-box algorithms)
to business experts. In a retail environment, mer-
chants are the experts and play a key role in most of
the merchandising decisions, ranging from deter-
mining the products that should be carried across
channels (i.e., stores and e-commerce websites), the
inventory level of each product that each store should
carry, and the prices at which these products should
be sold. At Walmart, merchants determine the mark-
down strategy, while store associates execute it (e.g.,
change price labels or remove unsold inventory) within
the store.

As we embarked on our algorithmic journey, al-
thoughwe had the support of senior-level executives,
we still wanted to empower themerchants by building
a user interface (UI) that would provide themwith full
visibility to the system. Early in the project, during the
experimentation phase, we worked with a few mer-
chants to understand the business and to enhance the
business constraints within the algorithm. Doing so
gave us a clear idea of the metrics we would need to
publish in the UI. Our software (called CMD inter-
nally) allows merchants to select and review the al-
gorithmic recommendations for all the markdown
plans before execution. Althoughwewere confident of
the performance of the personalized algorithmic rec-
ommendations, we still included an option to allow
merchants to choose the rule-based policy. This flex-
ibility and transparency reinforced the confidence of
the merchants and led to an acceptance rate of around
96% for executing the markdowns our algorithm rec-
ommended in the production system; in the remaining
4% of cases, our recommended prices were not ac-
cepted for reasons such as the need to negotiate with
some suppliers about specific thresholds related to
markdown prices. This bottoms-up approach and the
high degree of coordination among business stake-
holders, data scientists, machine-learning engineers,
and platform-software developers have been crucial in
accelerating the early adoption of our approach at an
organizational level.

Engineering Architecture
Although the system’s UI is used by the corporate
merchants, the pricing decisions are sent directly
to each brick-and-mortar store’s point-of-sale (POS)
system. We developed an immutable hybrid infra-
structure that integrates our optimization systems in
the cloud with Walmart’s merchant tools and backed
up by on-premises solutions. This architecture en-
ables the extraction and processing of data from
multiple Big Data sources in the cloud and our own
data centers. The overall system comprises components

developed to process markdown plans in a multiple-
stage approach broadly classified as filter (i.e., sort by
category to process), execute (process the data and run
the algorithms), and publish (combine and send results
to each store’s POS system). This approach has en-
abled us to address the scalability needs of individual
stages and the capability to dynamically tune un-
derlying system-component resources. To accom-
plish efficient and timely processing, the components
we implemented were loosely coupled for seamless
horizontal scaling of data processing and algorithmic
computation with increased resiliency to systemic
disruptions. To support the growing volume of store
and product combinations applicable for markdown
computations, we leveraged and optimized open-
source distributed computing and parallel execution
frameworks, which are now seamlessly integrated
with highly scalable storage and data-warehouse so-
lutions in the cloud. We successfully tested the ar-
chitecture using 68 million store and product combi-
nations to confirm the effectiveness of the markdown
process across departments.
The infrastructure alleviates the data-maintenance

workload and provides flexible processing capacity.
When a markdown plan is generated, the pricing
strategies for all items and stores are available na-
tionwide within five minutes. In addition, we insti-
tuted processes, such as inventory refreshes, that
continue to improve the quality of the real-time data.

Benefits
Below, we list the three key business metrics that
contribute to quantifying the impact on the business:
1. STR: An STR of 100% means that all items

marked for clearance were sold by the end of mark-
down period.
2. Clean shelf: Clean shelf refers to the percent-

age of store–item combinations that reach 100% sell
through (i.e., zero inventory) by the end ofmarkdown
period and that also have nonzero inventory on the
shelf within one week of the end of the markdown
period. A clean shelf of 100% means that across all
store–item combinations,wewere able to sell all items
marked for clearance by the end ofmarkdown period,
but had inventory on the shelf at some time during the
week preceding the end of the markdown period.
3. Cost: Cost is the amount we discount from the

original retail price to achieve maximum STR.
Using all three metrics helps us to measure the

success of our algorithms because using only one of
them by itself cannot gauge success. For example, by
just reducing price, we can increase the STR; however,
the discount we are willing to give has an upper
bound. Consider the following undesirable scenario:
We can give a 99.9% discount on an item and, thus,
almost certainly achieve an STR of 100%; for example,
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most customers will buy an item with an original of
price of $100 when the clearance price has been re-
duced to 10 cents.

Figure 3 shows the STR results of using our algorithm
and using the rule-based approach (25%–50%–75%) for
furniture products in 2019. Figure 4 shows the av-
erage relative changes across stores in cost and STR
for 20 product departments, which accounted for the
majority of markdowns in 2019. In all cases, our al-
gorithm achieved an STR that was higher or at least
the same when compared with the rule-based ap-
proach; however, the cost was lower in 16 of 20 de-
partments. We ran all our experiments in all Walmart
stores in the United States, aswe describe above in the
Development and Implementation section. In con-
ducting our experiments, we divided the stores such
that half used our new system and half used the rule-
based system. In the graphs in Figures 5, 6, and 7, we
compare the algorithmic approach with Walmart’s
rule-based policy.

This approach, which we implemented in all 4,769
of Walmart’s U.S. stores, has achieved outstanding
cost-saving performance. Beginning in February 2019,
we deployed our system in 60 of 70 departments. By
the end of 2019, the results demonstrated that this new
algorithmic approach increased the STR by aweighted
average of about 21% and achieved cost reductions of
about 7% on average. We also increased the average
time bywhichwe cleared the shelves on time by 15.8%.
These metrics translate into millions of dollars of fi-
nancial savings.

Moreover, Walmart accrued additional savings in
labor, printing labels, and redeployment of labor
(opportunity costs) as a result of using the single-
pricing strategy. For example, printing a label and
labeling a product takes an average of two minutes,
and the rule-based system involves three pricing
updates. Therefore, using the single-pricing strategy
to mark down 25 items in a store would save a store
associate (2 × 25 × (3 − 1)), or 100 minutes, which

equates to 1.6 people-hours for one store’s single-
markdown plan. In addition, the single-pricing strat-
egy can save label costs for printing materials. One
label costs approximately 20 cents; therefore, theprinting
cost savings would be ($0.20 × 25 × (3 − 1)), or $10 per
store, for 25 marked-down items. Because Walmart
marks down more than 1,000 items each month, the
potential financial savings could be massive.
In addition to financial savings, other tangible

benefits can accrue from the feedback loop resulting
from markdown operations. Markdown results pro-
vide vital feedback to improve other upstream opti-
mization models and, thus, prevent excessive stock-
ing of inventory in stores. Figure 8 illustrates the
saturation effect of sales based on static inventory.

Figure 4. The Graph Shows the Relative Difference in Cost
and STR When Using Our Algorithm Instead of the Rules-
Based Policy Across 20 Departments

Figure 5. The Graph Shows the Distribution of Relative
Difference (i.e., Delta) in STR When Using Our Algorithm
Instead of the Rules-Based Policy Across 70 Categories

Note. The weighted average (i.e., weighted by total units of prod-
uct) = 21%; that is, using our algorithm provided a STR increase of
21% over the rule-based policy.

Figure 6. The Graph Shows the Distribution of Relative
Difference (i.e., Delta) in Cost When Using Our Algorithm
Instead of the Rules-Based Policy Across 70 Categories

Note. The weighted average = −7%; that is, on average, using our
algorithm reduced costs by 7% comparedwith the rules-based policy.
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This reflects the decrease of the marginal probability
of a sale as limited by store inventory. As an exam-
ple, see Department #6 in Figure 4. A 50% and 60%
markdown result in the same sales due to limited
inventory; higher cost does not result in a propor-
tionally higher STR.

When forecasted demand is higher than actual sales
because of the saturation effect, using forecasted
demand to determine an optimal price is not as re-
alistic as using an inventory-decreasing function, as
we implemented in our system. Product #1 in Figure 9
illustrates a case in which assortment operations re-
ceive outlier feedback related to deviations from the
markdown results; for example, a deviation might
result because a product was not placed in the best
position of the modular. Assortment operations in

retailing involve determining the types of products
that stores display in a modular for purchase by
consumers, the quantity of the products available to
customers, and the position of the product in a
modular (Li et al. 2015). For example, consider the
situation in which four products are similar, but three
have similar sales patterns and one does not sell well,
although its price has been deeply marked down. A
potential cause could be that the product that did not
sell well had been placed such that customers could
not easily find it.
More predictability and reliability in markdown

operations implies better planning of store labor.
Store associates who are available to service cus-
tomers, because they are utilizing the time saved from
not having to label and remove marked-down items
from the shelves, can provide better and more ser-
vices for customers. Furthermore, the algorithmic
approach has resulted in improving the jobs of the
approximately 3,000merchantswho previously spent
hours in calculating financial losses resulting from
markdowns. Most merchants have become enthusi-
astic users of the new tool, gratefully seeing their
responsibilities evolving from repetitive, manual data
entry and making decisions based on their experience
rather than based on data, to exceptions handling and
scenario planning.
This approach has also had significant societal

impact for low- and median-income families who
shop at Walmart. The company uses any efficiency
gains it achieves to lower the prices of its products for
its customers. The efficiency gains include labor sav-
ings from removing marked-down items and labels
and the salvage cost of unsold items. All these cost
savings contribute to lowering the prices of household

Figure 7. The Graph Shows the Distribution of Relative
Difference (i.e., Delta) in Clean-Shelf Rates When Using Our
Algorithm Instead of the Rules-Based Policy Across 70 Categories

Note. The weighted average = 15.8%; that is, on average, using our
algorithm achieved a 15.8%higher clean-shelf rate comparedwith the
rules-based policy.

Figure 8. The Graph Illustrates Inventory vs. Sold Units
Associated with Forecasted Demand and the Saturation Effect

Figure 9. The Chart Illustrates a Situation inWhichOur System
Infers an Assortment Issue (Li et al. 2015) (i.e., Inadequate
Exposure on the Shelf) from the Markdown Results
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essentials, thus enabling customers to purchase more
items with the same budget.

Future Work: Extending the Algorithmic
Approach for Apparel
Since we implemented our model and its associated
methodology at Walmart, we have enhanced both
and transformed them into a more general inventory-
and pricing-optimization framework for the com-
pany’s markdown business. The products to which
we extended our model include apparel, a category
that has large variations in demand; goods that can
be significantly impacted by seasonal factors; and
those that can suffer from significant spoilage if the
markdown strategy is not managed properly. Future
enhancements to our system include (1) a gradient-
boosting forecastingmodel for each product based on
additional underlying predictor variables, such as
size, color, brand, modular type, and season; and (2) a
simulation-optimization approach to optimize in-
ventory settings for each apparel product on each day
of the upcoming week. This approach can accom-
modate changes in sales based on customer choices
and marked-down products and could reduce costs
by tens of millions of dollars annually for the apparel
business division. Apparel is a category that is key to
future clearance sales and their associated revenues.
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Appendix A. Single-Markdown
Price-Model Formulation

In this appendix, we describe the solution to the partial
differential equation and the math formulation of our op-
timization model to determine a single-markdown price
(p) to be used throughout the markdown duration.
The objective is to maximize expected revenue, given

an initial inventory level (I0), regular price (P), duration
of the markdown time (t), and labor cost (c), to remove
unsold inventory at the end of the duration; meanwhile,
some inventory must remain on the shelf during the
markdown until a short time (Tmin) prior to the arrival of the
new modular.

D(p, t) = demand function, which represents the demand
at time t if the price is p; pj

I = markdown price for product j;
I0 = inventory at the start of the markdown period;
t = time; t = 0 at the start of the markdown period;
c = per-unit labor cost of disposing of unsold inventory of a

given item;
Tmin = time duration when nonzero inventory must exist

on the shelf;
I = on-hand inventory quantity (we assume no inventory is

on order because replenishment ceased prior to the mark-
down period);

πI = revenue less cost generated in the expression form
of inventory;

πd = revenue less cost generated in the expression form
of demand;

k = price-sensitivity parameter;
t_outdate = duration (weeks) from the markdown starting

week until the time that new products arrive for placement
on a shelf;

doff = price-discount maximum limit (e.g., 90% is an ex-
ample of a discount’s maximum limit).
For demand function D(pj, t), the profit during the mark-
down period can be written as follows:

πd (pj, t outdate) !
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pj D(pj , t outdate) − c(I0 − D(pj , t outdate))
if D(pj , t outdate)< I0.

pj I0 otherwise
(A.1)

For on-hand inventory function I(p, t), the profit during
markdown can be written as:

πI (pj , t outdate) ! pj (I0 − I (pj , t outdate))
− c*I (pj , t outdate). (A.2)

Inspired by the Black–Scholes equation in diffusion form
(Hull 2018), we propose that the on-hand inventory func-
tion (I) is twice differentiable with respect to price (p) and
once with respect to time (t), as shown in Equation (A.3).
The proportionality stochastic variable, (k), represents sen-
sitivity of demand to the price at a store and is unique for
each store and product. Intuitively, k changes over time and
has a randomness of its own.

∂I
∂t

! k
∂2I
∂p2

. (A.3)

Recall that the PDE has boundary conditions. The first
condition in Equation (A.4) guarantees that on-hand in-
ventory will not drop if the price goes to infinity. Equa-
tion (A.5) states the initial inventory at the beginning of the
markdown period and that no replenishment will occur
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once the markdown period begins. The third condition
indicates that inventory will be sold out if Walmart sells the
items for free. The last condition indicates that inventory
will eventually be zero if time proceeds to infinity without
replenishment. Let T be the set of all the week durations of
the markdown period {1,2,3,4,. . .} and P be the set of all the
potential price points:

I(∞, t) ! I0 as p→∞, ∀ t ∈ T, (A.4)
I (p, 0) ! I0∀p ∈ P, (A.5)
I (p, t) ! 0 as p→ 0, (A.6)
I (p, t) ! 0 as t→∞. (A.7)

From Equation (A.3) and the boundary conditions from
Equation (A.4) to Equation (A.7), we can derive I as follows:

I (p, t) ! I0
(
erf

(
p̅̅̅̅
4kt

√ + ε

))
. (A.8)

erf denotes the error function, where erf
( p̅̅̅

4kt
√ + ε

) !
2
π

∫ p̅ ̅̅
4kt

√ +ε
0 e−x2dx.
ε is the random variable that represents the error term.

For eachSKU(j), we solve the following optimizationmodel:
Maximize

pj
(
I0 − I0

(
erf

(
pj̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4k * t outdate
√ + ε

)))

− cj*I0
(
erf

(
pj̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

4k * t outdate
√ + ε

))
,

(A.9)

subject to

I (pj, tmin)> 0, (A.10)
pj < Pj , (A.11)

1 − pj
Pj

≤ doff . (A.12)

Appendix B. Multiple-Markdown Prices
Model Formulation

In this appendix, we describe the math formulation of our
model to determine multiple-markdown prices to be used
throughout the markdown duration. We use a Markov
decision process (Bertsekas 2005) tomodelmultiple-pricing
processes. At each time step, the process is in some state (s),
and the decision maker may choose any action (a) that is
available in state (s). The process responds at the next
time step by randomly moving into a new state (s’) and
giving the decision maker a corresponding reward (R).
The action–value function (Sutton and Barto 2018), also
called a Q function, Q{πt (sj, aj)}, tells us the value (reward)
of taking an action aj in some state sj when following a
specific policy. It is the expected return given the state and
action under πt. It specifies the goodness of choosing a
particular action in a state with a policy. By structuring the
search to explore and exploit the sequence of actions given
an initial state, we are optimizing

MaximizeQ
{
πt
(
sj, aj

)} ! Eπ

[
Rj,t |sj,t ! sj, aj,t ! aj

]
, (B.1)

subject to
∑

aj
π(sj, aj) ! 1. (B.2)

We define the action–value function as a recursive function
(Bellman’s Equation) to maximize the expected revenue
and minimize the related cost (Nagare and Dutta 2018):

Q
{
πt
(
sj, aj

)} !
∑

s′j

P(s′ | s, a) Rsjs′j + γ
∑

a′
π(s′ , a′ )Q{

π
(
s
′
j, a

′
j
)}
.

(B.3)

We use the following notations:
πt = policy-mapping states to markdown prices chosen

at time t;
aj,t = an allowed markdown percentage chosen from a set

ranging from a minimum (e.g., 5%) to a maximum (e.g., 85%)
for product j at time t;

Q{π (sj, aj)} = action–value function, expected discounted
reward if action aj from state sj is performed and then follows
the optimal policy;

Rj,t = expected discounted reward obtained after tran-
sitioning from state s to state s’, which we designed to ensure
that the decision-making model chooses actions that result in
achieving the main objective, while also following certain
intrinsic behaviors at time t;

sj,t = state sj,t, a vector of a list of feature values (e.g.,
available inventory, previous time step’s markdown percent-
age, revenue, sell-through rate, number of upcoming holidays);

P(s’,r| s,a) = the probability of transitioning from state s to
state s’ with one-step dynamics taking action a (i.e., mark-
down percentage).
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